

### Name: Song Chen, Company: Fuji Electric Co., Ltd

### Outline



- Introduction
- Technology of 2.3kV Si device
- Technology of 2.3kV SiC-MOSFET device
- Static characteristics: I-V curves of IGBT/MOSFET devices
- Static characteristics: I-V curves of FWD/MOSFET devices
- Switching waveforms of 2.3kV Si device
- Switching waveforms of 2.3kV SiC-MOSFET device
- Power dissipation comparison
- Conclusion





## Introduction

### **Motivation**

DC-link voltage ~1500V is required for renewable energy applications.

- 2-level topology with 3.3kV devices:
  Large switching losses due to the high blocking voltage device.
- 3-level NPC topology with 1.2kV devices: Large number of devices and gate drives Bigger commutation inductance

### **Our Proposal**

New 2.3kV devices for renewable energy systems.

- Advantages of 2-level topology with 2.3kV devices:
  - ✓ Smaller footprint size
  - ✓ Smaller number of gate drivers
  - ✓ Lower on-state losses
  - Lower commutation inductance







# Technology of 2.3kV Si IGBT



- ◆ 2.3kV Si-IGBT device based on the 7<sup>th</sup> Gen technology
- Thinner drift layer
- Low on-state voltage and low conduction loss

#### **Technologies of 7G IGBT**

- Thinner drift layer
  - Reduce  $V_{CE(sat)}$  and  $E_{off}$
- More fine pattern of trench pitch
  Reduce V<sub>CE(sat)</sub> and E<sub>off</sub>
- Optimized Field-Stop layer
  - Secure breakdown voltage
  - Low leakage current at high temperature



Cross section view of Si-IGBT chip



# Technology of 2.3kV SiC-MOSFET



Fuji  $2^{nd}$  Gen SiC-MOSFET has 23% lower  $R_{on}$  than Fuji  $1^{st}$  Gen SiC-MOSFET by shrinking the cell pitch.

1<sup>st</sup> Gen. Source Gate Q Source Metal SiO<sub>2</sub> n P base ate P base P base p ()  $p^+$ p<sup>+</sup> n-drift layer n+ substrate 6 Drain

Cross section view of SiC-MOSFET

### Technologies of Low R<sub>on</sub>

- Narrow cell pitch
- Thin N+ substrate
- Trench gate structure





For Fuji Electric

# On-state Voltage of Si IGBT / SiC MOSFET pcim

Compared to 1.2kV Si IGBT in 3-level NPC circuit,

- ◆ 2.3kV Si IGBT in 2-level circuit is 33% smaller.
- ◆ 2.3kV SiC-MOSFET in 2-level circuit is 37% smaller.





6

### On-state Voltage of Si FWD / SiC MOSFET

Compared to 1.2kV Si FWD in 3-level NPC circuit,

- ◆ 2.3kV Si FWD in 2-level circuit is 33% smaller.
- ◆ 2.3kV SiC-MOSFET (Body Diode) in 2-level circuit is 26% smaller.





## Switching Waveforms of 2.3kV Si-IGBT pcim

- ◆ Larger turn-off and reverse recovery tail current at higher temperature
- Smaller di/dt at higher temperature
- ◆ Larger switching losses at the higher temperature

#### Turn-on waveform

Turn-off waveform

Reverse recovery waveform







### Switching Waveforms of 2.3kV SiC-MOSFETpcim

- No tail current and small spike
- Smaller spike voltage at higher temperature







### Power Dissipation Comparison



Conditions of  $I_0$ =600Arms,  $V_{DC}$ =1500V, cos $\varphi$ =1,  $\lambda$ =1.0,  $f_c$ =1 kHz,  $T_{vi}$ =150 degC.

2-level topology with 2.3kV Si IGBT and 3-level NPC topology with 1.2kV Si IGBT

2-level topology with 2.3kV SiC MOSFET and 3-level NPC topology with 1.2kV Si IGBT



The total power dissipation is almost the same.

10



SiC device has better performance.



### Benefits of 2.3kV device in 2-level topology

✓ Simplified circuits and drives, reduced dissipation losses

|                        | 3-level (Si)                       | 2-level (Si)                    | 2-level (SiC)      |
|------------------------|------------------------------------|---------------------------------|--------------------|
| Number of devices      | <b>30</b> 😕<br>(IGBT x12, FWD x18) | <b>12</b> 😕<br>(IGBT x6, FWDx6) | 6 ☺<br>(MOSFET x6) |
| Footprint              | 100% 😕                             | 33% 🙂                           | 33% 🙂              |
| Number of gate drivers | 12 😕                               | 6 🙂                             | 6 🙂                |
| Total loss             | 100% 😕                             | 103% 😕                          | 44% ⓒ              |
| On-state loss          | 100% 😕                             | 45% ©                           | 38% 🙂              |
| Switching loss         | 100% 😕                             | 487% 😕                          | 80% 😳              |







- Newly developed 2.3kV Si-IGBT and 2.3kV SiC-MOSFET with trench gate structure have been introduced.
- The 2.3kV devices are suitable for renewable energy applications with ~1500VDC bus voltage.
- The 2.3kV SiC-MOSFET has low power dissipation, and it can operate at higher switching frequency.
- The 2.3kV devices have the following benefits:
  - Simplified inverter design with a small number of gate drives
  - Low commutation inductance
  - Low on-state loss



